If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15n^2-16n+4=0
a = 15; b = -16; c = +4;
Δ = b2-4ac
Δ = -162-4·15·4
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4}{2*15}=\frac{12}{30} =2/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4}{2*15}=\frac{20}{30} =2/3 $
| -26-2r=-5(r+7) | | -26-2r=-5(r+70 | | 5x=9x/10+164 | | 1/2(4x+6)=1/2(4x+8) | | 12x−13=1 | | 720=460+x+(x+10) | | 8w-4=28 | | 14+3|2x+5|=17 | | 3(8-3n)-7n=-40-8n | | 5x+(5-x)8=-131 | | 12+6x=-24 | | X+2x+2x-4=21 | | -3(8-5r)-8=10+8r | | 7x31=5x+9 | | 9p-7=3p=11 | | 2(x-3)=3(x+2)-x | | 3x-2(4-5x)=2(11-×) | | -7(4p-4)=28+2p | | 2x+18+3x-9=14 | | 51−a=21+a | | 7x-31=5x | | (2+a)+(3a)=50 | | 10y+1=-11 | | 1/7y-6=-9 | | 23+2x=23 | | X+4+x=34 | | 9x+6-8x=2x-3 | | 21+-31n+8n2=0 | | 3.5x+12=90 | | -7x+14=21x | | (2a)+5=35 | | 6r+23=-2(4r-1)+7r |